

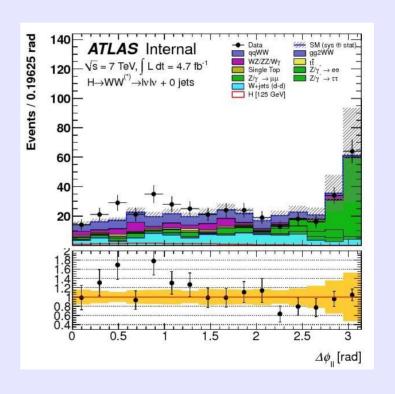
H->WW: STUDY OF LOWPT EXCESS

Lina Galtieri, Simone Pagan Griso (LBNL), Bill Quayle (Wisconsin and LBNL)

Outline

- The excess in the low lepton Pt analysis
- Comparison of signal and background kinematic distributions
- Flavor dependence of excess
- Summary

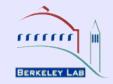
STUDIES of LOWPT $\Delta\Phi_{11}$ EXCESS



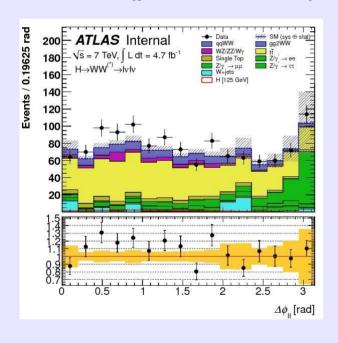
LowpT analysis not included in present paper, because of an excess in the $\Delta\Phi$ distribution which is being investigated. It appears early in the event selection for the njet=0 sample

Corrinne March 14 Summary (Ischia Workshop)

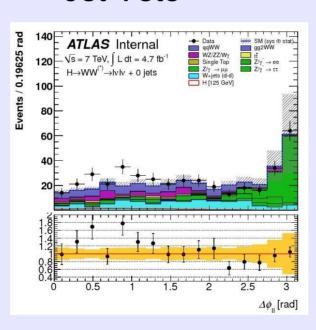
- How significant is this? Consider integral of first 9 bins (0 < Δφ < 1.77, close to cut value)
 - → Predict 169.4 events, observe 211
 - → stat-only p-value 0.0011
 - → add W+jets systematic → 0.03
 - \rightarrow add all BG syst. \rightarrow 0.18
 - → add signal at 125 GeV → 0.43 (11 additional events)


→ ...

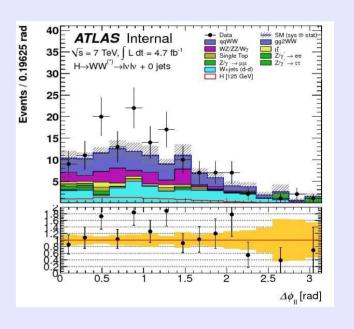
Recent studies by Antonio Boveia identified the sample where the excess happens: events with a subleading muon



SEQUENCE OF $\Delta\Phi_{11}$ PLOTS



The excess is seen at the pre-selection level (Cut 11) and persists through subsequent background reducing cuts


Cut 11 (preselection)

Jet Veto

Njet=0 final plot

H->WW->IvIv Low PT CutFlow

How significant is the excess?

	Signal [125 GeV]	ww	$WZ/ZZ/W\gamma^*$	ttbar	Single Top	Z/γ^*+jets	W+jets(d-d)	Total Bkg.(d-d)	Seen
$E_{\mathrm{T,rel}}^{\mathrm{miss}} > 45,25$ GeV, Cut 11	21 ± 1	118 ± 14	52 ± 8	591 ± 31	62 ± 4	265 ± 116	113 ± 111	1201 ± 170	1235
0j: jet veto	14 ± 1	79 ± 7	39 ± 7	13 ± 3	8.9 ± 1.9	145 ± 68	92 ± 60	376 ± 85	406
0j: $m_{\ell\ell} < 50~{ m GeV}$	12 ± 1	50 ± 4	27 ± 6	6.5 ± 1.6	5.1 ± 1.2	123 ± 55	57 ± 40	268 ± 67	297
0j: $p_{\mathrm{T},\ell\ell} > 45,30~\mathrm{GeV}$	9.8 ± 0.9	39 ± 4	20 ± 4	5.5 ± 1.3	4.7 ± 1.1	8.4 ± 4.1	37 ± 20	115 ± 14	143
0j: $\Delta\phi_{\ell\ell} < 1.8$	8.9 ± 0.8	35 ± 3	19 ± 4	5.2 ± 1.3	4.3 ± 1.1	4.3 ± 1.8	29 ± 16	96 ± 11	124
1j: exactly one jet 1j: b-jet veto (25 GeV, 80% eff) 1j: $p_{\rm T}^{\rm tot} < 30 \; {\rm GeV}$ 1j: $\Delta \phi_{\ell\ell} < 1.8$	5.0 ± 0.4 4.6 ± 0.4 3.2 ± 0.6 2.2 ± 0.4	25 ± 16 24 ± 14 17 ± 5 7.2 ± 2.4	10 ± 7 9.5 ± 5.8 8.0 ± 5.6 5.5 ± 3.2	102 ± 37 29 ± 13 13 ± 4 5.2 ± 1.7	27 ± 9 8.7 ± 3.8 4.3 ± 1.5 2.3 ± 0.8	81 ± 39 75 ± 36 33 ± 10 5.2 ± 2.9	21 ± 26 20 ± 23 13 ± 9 3.9 ± 3.2	266 ± 107 165 ± 72 89 ± 26 29 ± 9	316 217 120 40

After Jet Veto: 79 39 145 92 376

after $\Delta\Phi_{\text{II}} < 1.8$: 35 19 4.3 29 96 124

	Total Backg	signal	Observed	Backg Hypothesis
After Jet Veto	376 ± 85	14 ± 1	406	good
with $\Delta\Phi$ <1.8	170 ± 12	11 ± 1	212	excess too large
				41 ev, expect 11
After all cuts	96 ± 11	8.9 ± 0.8	124	excess 28 ± 12
(∆Ф<1.8)				28 ev, expect 9

406

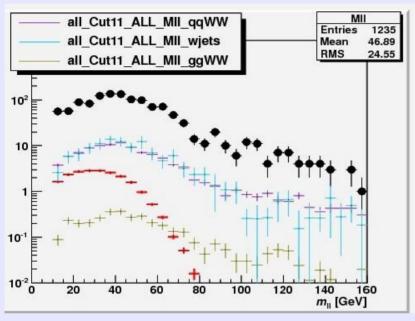
H->WW->IvIv Low PT Excess

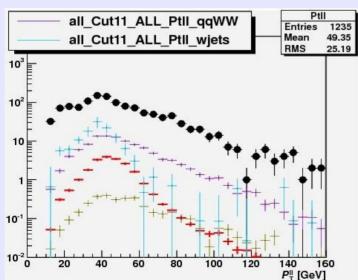
What can the excess be due to?

- A Normalization factor of one of the backgrounds
- Mismodeling of one (or more) of the backgrounds
- Mismeasurement of one of the variables, not reproduced by the simulation

Regarding point 1, we can look at the $\Delta\Phi_{ll}$ dependence of each background, to see if any of them is enhanced in the excess region.

This is what we will look at in the next few slides:

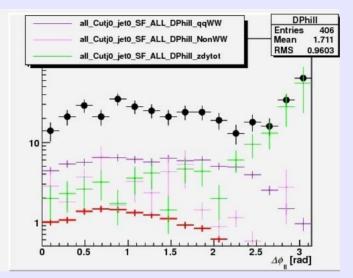

Note that background modeling for lowpT is same as for the nominal analysis

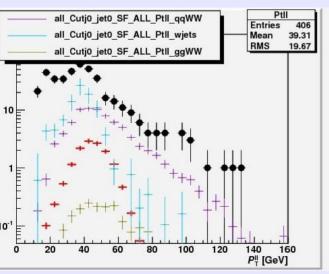

Some plots at Cut11 (preselection)

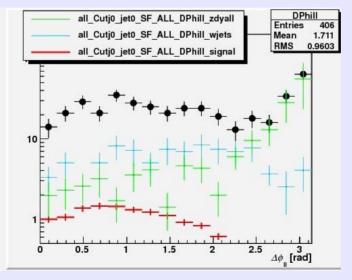
Not all backgrounds are included in these plots

 $\Delta \phi_{||}$ plots: zdy, WW, NonWW are similar to signal for $\Delta \phi_{||} < 1.8$

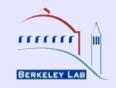
The qq->WW and gg->WW are shown separately to check their relative contributions at different cut levels. No change in the ratio observed.

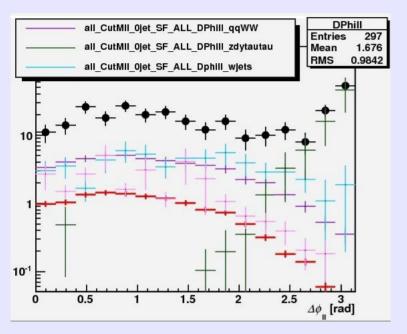


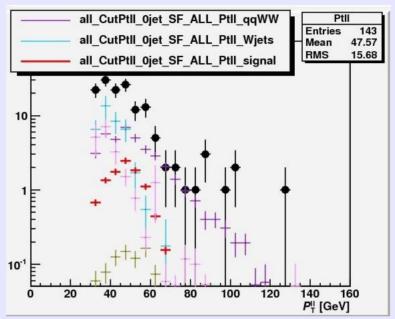

Plots at Cutj0_0jet (Jet Veto)

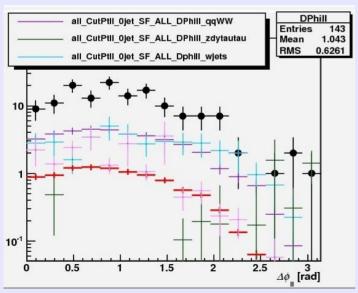


The two $\Delta\Phi$ plots have different backgrounds . Not all background are shown on the left plots


Note that:


Zdy is now smaller than W+jets and WW for $\Delta \Phi$ <1.8

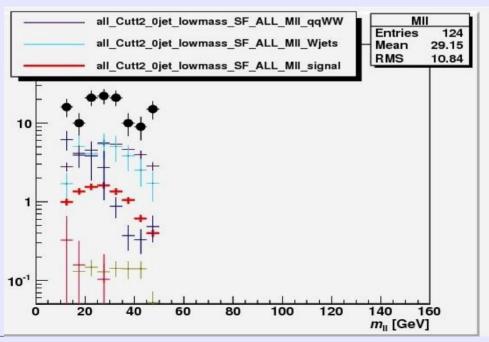

 $\Delta \Phi$ for W+jets and WW are not very different from the signal (within the poor statistics)



Some Plots after the Mll, Ptll Cuts

The Pt_{tt} cut has reduced the sample from 297 events to 143 events.

Most of the events removed with this cut are in the region above 2.0.


Two plots at Cutt2

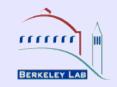
Here we see (right plot) that the W+jets, the WW and the NonWW backgrounds all, have the same shape as the signal.

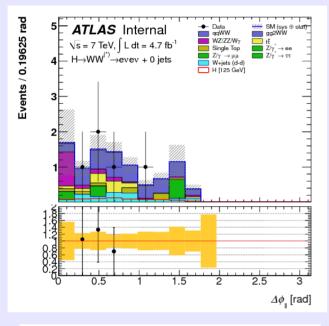
A normalization problem of one of them could accommodate the excess. This is probably already known.

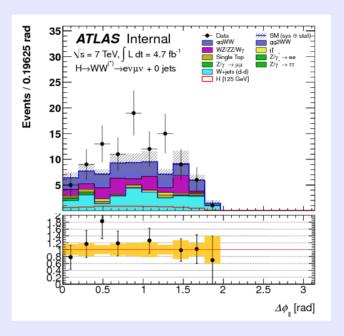
Z->tau tau shown in this plot. This is obtained with teh collinear Approximation at the moment. Better modeling is being contemplated.

Flavor Dependence of Excess

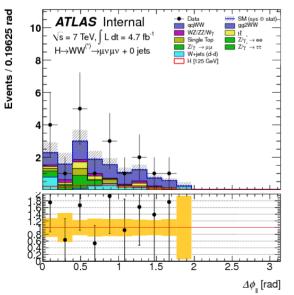
Need to understand how Antonio's break trough (contamination of the subleading muons) enters into the excess.

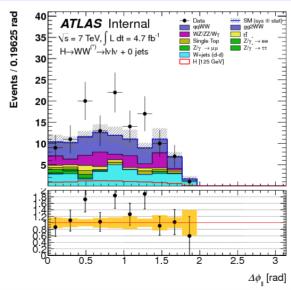

Cutflow for different flavors


Lepton channel	ee	μμ	eμ	all	
signal	2.2 ± 0.2	5.1 ± 0.3	13.3 ± 0.9	20.6 ± 1.3	
Total Back	159 ± 24	271 ± 33	770 ± 114	1201 ± 170	
observed	144	263	828	1235	
signal	1.4 ± 0.1	3.3 ± 0.3	8.9 ± 0.8	13.6 ± 1.2	
Total Back.	41 ± 9	80 ± 15	255 ± 63	376 ± 85	
observed	43	81	282	406	
signal	0.76 ± 0.08	> 45,30 GeV 1.6 ± 0.2	7.5 ± 0.7	9.8 ± 1.9	1
Total Back.	9.7 ± 3.1	15 ± 2	90 ± 10	115 ± 14	<pre>excess</pre>
observed	6	20	117	143	CAGGGG
- 12	Final Samp	ole, with $\Delta\Phi$	< 1.8		
signal	8.9 ± 0.8	0.7 ± 0.1	1.6 ± 1.1	6.6 ± 0.6	
Total Back.	9.3 ± 3.0	14.2 ± 2.3	73 ± 8	96 ± 11	<pre>excess</pre>
Observed	5	19	100	124	


No excess in ee, excess in both $e\mu$ and $\mu\mu$

FINAL PLOTS for ee, μμ, eμ, all





Low statistics, but

consistent with no excess.

Plots with muons show excess.

Summary

Looked at shapes of of the $\Delta\phi_{ll}$ distributions for different backgrounds to see if any of them expects an enhancement where we see the excess.

Turns out that: WW, W+jets and NonWW backgrounds (with present statistics) have a distribution not too different from the signal in the $\Delta\phi_{ll}$ < 1.8 region (slide 9).

The cut flow for different flavors shows the same trend seen by Antonio, but not as pronounced because he split the e-high μ -low and the μ -high e-low samples.

More studies to follow